Sandia
National
Laboratories

Exceptional
service

in the

national

interest

#CCR

K O k k o S o Center for Computing Research
Manycore Programmability
and Performance Portability

SIAM Parallel Processing
April 12, 2016

.
'Aq< -
L e = LN
- R
d

B

H. Carter Edwards
Christian Trott

SISt

E

SAND2016-2964 C

f

- Py T i

[== T== Y -

[? 3 3 [y 3 3 3
- A A R Y A N

\ gnvancen &
. SIMULATION
7 A\ ComPuTing®

“\Z""* U.S. DEPARTMENT OF V/ VY A | DQ:G{

ENERGY /IVA A
Nz National Nuclear Security Administration
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

What is Kokkos? rh) s

LAMMPS EMPIRE

Albany SPARC NABLA (DSL)
Drekar Applications & Libraries | alglilales

Kokkos

performance portability for C++ applications

Multi-Core Many-Core APU CPU+GPU

What is Kokkos?)
= K()KKOQ (Greek, not an acronym)

= Translation: “granule” or “grain” ; like grains of sand on a beach

= Performance Portable Thread-Parallel Programming Model
= E.g., “X”in “MPI+X” ; not a distributed-memory programming model
= Application identifies its parallelizable grains of computations and data

= Kokkos maps those computations onto cores and that data onto memory

" Fully Performance Portable C++11 Library Implementation
= Not a language extension (e.g., OpenMP, OpenACC, OpenCL, ...)
= Production — open source at https://github.com/kokkos/kokkos

v’ Multicore CPU - including NUMA architectural concerns

v’ Intel Xeon Phi (KNC) — toward DOE’s Trinity (ATS-1) supercomputer
v"NVIDIA GPU (Kepler) — toward DOE’s Sierra (ATS-2) supercomputer
<> IBM Power 8 — toward DOE’s Sierra (ATS-2) supercomputer

<> AMD Fusion — back-end in collaboration with AMD via HCC
v" Regularly tested

<> Ramping up testing

Abstractions: Patterns, Policies, and Spaces () &=

Laboratories

= Parallel Pattern of user’s computations
= parallel_for, parallel_reduce, parallel_scan, task-graph, ... (extensible)

= Execution Policy tells how user computation will be executed

= Static scheduling, dynamic scheduling, thread-teams, ... (extensible)

= Execution Space tells where user computations will execute

= Which cores, numa region, GPU, ... (extensible)

= Memory Space tells where user data resides

= Host memory, GPU memory, high bandwidth memory, ... (extensible)

= Layout (policy) tells how user data is laid out in memory

= Row-major, column-major, array-of-struct, struct-of-array ... (extensible)

= Differentiating: Layout and Memory Space
= Versus other programming models (OpenMP, OpenACg, ...)

= Critical for performance portability ...

Layout Abstraction: Multidimensional Array) e,

Laboratories

= Classical (50 years!) data pattern for science & engineering codes
= Computer languages hard-wire multidimensional array layout mapping
= Problem: different architectures require different layouts for performance
» Leads to architecture-specific versions of code to obtain performance
= E.g., “Array of Structure” <> “Structure of Array” redesigns

=E
elgl’ — -; elgl’
“row-major” 15 “column-major”
CPU caching - Ll Lbitilil GPU coalescing
1> viviviviviviviv

= Kokkos separates layout from user’s computational code
" Choose layout for architecture-specific memory access pattern
» Without modifying user’s computational code
= Polymorphic layout via C++ template meta-programming (extensible)
> e.g., Hierarchical Tiling layout (array of structure of array)

= Bonus: easy/transparent use of special data access hardware
= Atomic operations, GPU texture cache, ... (extensible)

Performance Impact of Data Layout

Sandia
"1 National

Laboratories

« Molecular dynamics computational kernel in miniMD

Simple Lennard Jones force model:
Atom neighbor list to avoid N? computations

F_

b3 68[(r 1]

pos_i = pos(i);
for(jj = 0;
j:
r ij

neighbors (i, jj);

}
£(i) = £ i;

jJ < num_neighbors (i) ;

Ji++) A

= pos(i,0..2) - pos(j,0..2); // random read 3 floats
if (lr_ij| < r_cut) £ i += 6*e*((s/r_ij)* 7 - 2*(s/r_ij)'~1§\

Test Problem

o 864k atoms, ~77 neighbors

o 2D neighbor array

o Different layouts CPU vs GPU

o Random read ‘pos’ through
GPU texture cache

. Large performance loss
with wrong data layout

200

150

GFlop/s
[y
o
o

Xeon Xeon Phi

M correct layout
(with texture)

“ correct layout
(without texture)

ffffffffff
rAA

wrong layout
(with texture)

K20x

Performance Overhead?) o
Kokkos is competitive with other programming models

= Regularly performance-test mini-applications on Sandia’s ASC/
CSSE test beds

= MiniFE: finite element linear system iterative solver mini-app

= Compare to versions with architecture-specialized programming models

MiniFE CG-Solve time for 200 iterations on 200"3 mesh

24
20
5
c 16 7
S 12 7 /
£ = =pap |7 2 2=l
4+ M Mmv — vy
0 | 7 Z 7 Z
K20X IvyBridge SandyBridge XeonPhi B0 XeonPhi CO IBM Power7+
NVIDIA ELL “NVIDIA CuSparse Kokkos ® OpenMP

® MPI-Only “OpenCL ETBB 7 Cilk+(1 Socket)

Performance Portability & Future Proofing) e,

Laboratories

Integrated mapping of users’ parallel computations and data
through abstractions of patterns, policies, spaces, and layout.

= Versus other thread parallel programming models (mechanisms)
= OpenMP, OpenACC, OpenCL, ... have parallel execution
= OpenMP 4 finally has execution spaces; when memory spaces ??
» All of these neglect data layout mapping
Requiring significant code refactoring to change data access patterns
Cannot provide performance portability
» All require language and compiler changes for extension

= Kokkos extensibility “future proofing” wrt evolving architectures
= Library extensions, not compiler extensions
= E.g., Intel KNL high bandwidth memory <& just another memory space

= Productivity versus other programming models?

Patterns, Policies, and C++11 Lambdas [f)&s

Laboratories

= Pattern composed with policy drives the computational body
for (inti=0;i<N;++i){/* body */}
policy body
parallel_for (|NJ, (=](int) {/* body */J);
C++11 lambda

= C++11 lambda implements computational body
= C++ compiler creates a closure for you: function body + captured data

Old school: tedium of writing a C++ class with operator()(inti)

= Kokkos executes your closure according to pattern and policy

= C++17 lambda within a class member function: /[=,*this]

* Fixed defect in C++11: no way to capture *this by value
= Data parallel patterns: for, reduce, scan
= Execution policies: range and hierarchical thread team
= lllustrate with the following examples...

Example: Sparse Matrix-Vector Multiply (SPMV) ()%

Laboratories

= Baseline serial version
for ((int 1 = 0 ; 1 < nrow ; ++i) {
for (int j = irow[i] ; J < irow[i+l] ; ++3)
y[i] += A[]j] * x[jcol[j] 1:;
}

= Simple Kokkos parallel version
parallel for(nrow , KOKKOS LAMBDA(int i) {

for (int j = irow[i] ; Jj < irow[i+l1l] ; ++3)
y[il += A[j] * x[jcol[]j] 1;
})
= “nrow” implies a Range execution policy
= Call body with i = [0..nrow), call in parallel with no ordering guarantees

= Call body in the default execution space

= KOKKOS LAMBDA for GPU/CUDA portability
"= CPU:#define KOKKOS LAMBDA [=] /* nothing */
" GPU:#define KOKKOS LAMBDA [=] @ host = device
= GPU requires CUDA 7.5 and lambda capture-by-value [=]

Example: Dot-product and Prefix-Sum) i,

Laboratories

= Baseline serial versions, is the pattern obvious?
double result = 0 ;
for (int 1 =0 ; 1 < N ; ++i) { result += x[i] * y[i],5 }

y[i] = 0 ;
for (int i =0 ; i < N ; ++i) { y[i+i] = y[i] + x[i]; }

= Simple Kokkos parallel versions
parallel reduce(N, KOKKOS LAMBDA(int i, double & tmp) {
tmp += x[i] * y[i] ;
}, result);

y[i] = 0 ;
parallel scan(N, KOKKOS LAMBDA(int i, int & tmp, bool final) {
tmp += x[i];
if (final) y[i+1]
});

tmp ;

= Kokkos manages for you:
= Thread local temporary variables

= [nter-thread synchronizations and reductions of thread local temporaries

Example: Sparse Matrix-Vector Multiply (SPMV) () iz%

Laboratories

= Explicit Range execution policy version

paza11e1.for(RARGEBOLIEYREPAGESOVAEGH)|, xoxxos_LAVEDA (int)

for (int j = irow[i] ; j < irow[i+1l] ; ++j)
y[i] += A[j] * x[Jcol[]] 1:
})

= |s[0.. nrow) enough parallelism?
= With O(1000)s GPU threads? That nested loop could also be parallel ...

= Hierarchical Thread Team execution policy

OpenMP : league of teams of threads
CUDA: grid of blocks of threads

Threads within a team are concurrent

Teams within a league are not concurrent

Example: Sparse Matrix-Vector Multiply (SPMV) () iz%

Laboratories
parallel_for (| TeamPolicy<Space> (nrow,AUTO)
KOKKOS_LAMEDA ([[€aMPOLICy<Space>: imember IEYPel nenber) |

const int i = member.league_ rank();

double result = 0 ;

parallel reduce (
‘TeamThreadRange (member,irow[i] ,irow[i+1]),
[&](int J , double & tmp) { tmp += A[Jj] * x[jcol[]]]’},
result) ;

if (member.team rank() == 0) y[i] = result ;

})

= Quter level of parallel pattern + execution policy
= TeamPolicy requires closure (lambda) with ‘member_type’ argument
" member is a handle for thread within s team within a league
= Requires KOKKOS_LAMBDA macro (CPU=>»GPU)
= |nner level of parallel pattern + execution policy

= TeamThreadRange identifies member threads that participate
= Ordinary (unmarked) C++11 lambda may be used

Data Placement and Layout: Views ri) s

Laboratories
" View< double**[3][8], Space,, > a(“a”,N,M);
= Allocate array data in a memory Space with dimensions [N][M][3][8]

= View semantics analogous to C++11 std::shared_ptr

a(i,j,k,l) : User’s access to array datum

= Multi-index mapping according to layout

= “Space” accessibility enforced; e.g., GPU code cannot access CPU memory
= Optional array bounds checking of indices for debugging

= View< ArrayType, Layout,, , Space,,, Attributes, >

= Explicitly declare array layout instead of letting Kokkos choose
= Access intent attributes; e.g., atomic, random access (GPU texture cache)

= Array subview of array view
= b=subview(a, {10,100}, {200,300}, 2, 3); // ranges and indices
= View of same data, with the appropriate layout and multi-index map

= View-like functionality on-track for C++20

Thread Safety and Atomic Operations ()i

Laboratories

= Some algorithms have inherent thread safety challenges
= Histogram summing into buckets
= Finite element assembly of linear system coefficients
» Scatter-add pattern : A[index[i]] += f(x[il, y[i], ...);

= Strategies for thread safety

= Coloring (partitioning) of work into disjoint subsets avoids conflicts

= Serial execution across subsets, parallel execution within a subset

= Performance concerns: reduced parallelism and coloring algorithm overhead
= Atomic operations serializes conflicts

= Special hardware for “+=" of numeric types, perhaps reduced performance

= Simpler to use than coloring, no loss of parallelism

= Atomics, C++11, and Kokkos
= C++11 has “hard wired” atomic types with atomic operations
= Kokkos provides atomic operations on ordinary types
= C++20 atomic operations for non-atomic types is “in the works”

Other Features (new or in-development) (&)

Laboratories

= Back-ends for new & changing node architectures
= AMD Fusion with new open source HCC compiler
" |Intel KNL heterogeneous memory (high bandwidth memory)
= NVIDIA GPU register shuffle for intra- thread team collectives

= Patterns, policies, spaces, layout
= Dynamic scheduling (work stealing) execution policies
= Multidimensional range policies (parallel “loop collapse”)
= Dynamically resizable arrays - thread-scalable within parallel operations
= Directed acyclic graph (DAG) of “fine grain” tasks execution pattern/policy
= Tiling layout mapping

= Portable embedded performance instrumentation

= Selective instrumentation of individual parallel dispatch
= parallel_for, parallel_reduce, parallel_scan

Conclusion / Takeaways) i,

Laboratories

= Performance Portability, for C++ Applications
" Integrated mapping of applications’ computations and data
Other programming models fail to map data and limit performance portability
= Future proofing via designed-in extensibility and ongoing R&D
= Production on Multicore CPU, Intel Xeon Phi, IBM Power 8, and NVIDIA GPU;
AMD Fusion in progress
github.com/kokkos/kokkos

= Productivity, for C++ Applications
= C++11 lambda for simple conversion of ‘for’ loops to ‘parallel_pattern’
= Reduce and Scan inter-thread complexity managed by Kokkos
= Hierarchical parallelism using nested patterns can increase parallelism

= Goal: ISO/C++ 2020 Standard subsumes Kokkos abstractions

NOTE: SIAM-PP16, MS81, Friday 4:50pm
Performance and Productivity of Abstract C++ Programming Model

